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A simple exponential pair potential has been chosen to describe the nature of interparticle interaction, 
and to interpret the experimental phonon dispersion relations in solid argon and neon. The computation 
is based on the quasiharmonic rigid-atom central force model, which takes account of the zero-point 
quantum effects by a method of iteration and includes interactions up to four nearest neighbors. The 
theoretical dispersion curves show fairly good agreement with inelastic neutron scattering data. However, 
theagreement is better for argon than neon. Causes of the discrepancy and the possibilities of improvement 
of the results have been discussed. 

Introduction 

A lot of theoretical work (f-3) has been done 
on the inert-gas solids to interpret their thermal 
properties, and thus to establish the exact nature 
of the interparticle interaction. Most of the 
workers calculated the thermal properties such 
as molar heat capacity, thermal expansion, 
compressibility, etc. with Lennard-Jones (LJ) 
and Kihara (4) (K) potentials and compared 
them with observed data. This work did not prove 
to be very fruitful due to the following reasons. 
First, the LJ and K potentials are empirical and 
are not based fully on the properties of the 
neutral spherical atoms constituting the solids. 
Second, these thermal properties depend only 
on the averages over the entire distribution of 
phonon frequencies, and thus provide less insight 
than individual frequencies. Thirdly, the available 
experimental data was not accurate enough due 
to the limitations of carrying out experiments at 
liquid helium temperatures. Later, Massbauer 
recoilless fractions (5-8) (for 83Kr) also did not 
prove to be very helpful for the purpose, due to 
practical difficulties in the preparation of the 
source and the absorber of low-vacancy concen- 
tration. Again, the recoilless fractions depend on 
the weighted averages of the vibration frequencies 
of the crystal lattices, and not on the individual 
normal vibration frequencies. But now the 
phonon dispersion curves for these solids (neon, 
argon, and krypton) have been obtained by the 

sufficiently perfected technique of inelastic 
scattering of neutrons, and one can precisely 
test any theoretical model simply by calculating 
the phonon dispersion curves in the symmetry 
directions [I 111, [l lo], [IOO] for comparison. 

Recently, the author has successfully used a 
similar exponential pair potential to interpret 
the experimental dispersion relations (9), and 
Miissbauer fraction (10) for solid krypton. It is, 
therefore, thought desirable to compute the 
phonon dispersion relations for argon and neon 
by the same model, and to compare them with 
the recent neutron scattering results (II, 22). The 
model used assumes the inert-gas atoms as hard 
spheres held together in the solid by weak, short 
range central forces. The high zero-point energy 
content, which the solids are believed to possess, 
is included through the potential parameters at 
a later stage by a method of iteration. The results 
and their discussion, and the conclusion are 
presented in the Discussion Section. The section 
below contains the discussion about the choice 
of the potential function, and a brief account of 
determination of the quasiharmonic potential 
parameters. The section after it describes the 
model and the method of computation. 

The Pair Potential 
According to Guggenheim and McGlashan 

(IS), many-parameter potential functions are 
useful only around the minimun of potential 
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curves, and as such they are incapable of repro- 
ducing the experimental isotherms of solids at 
moderate pressures when the interparticle distance 
is only slightly different from the minimum. On 
the other hand, 3-parameter potentials, like LJ 
and K potentials, show satisfactory performance 
(14) at both low and high pressures. However, 
these are empirical and also to some extent do not 
represent the physical situation there in the 
inert-gas solids. 

In view of the situation, the author has chosen 
the pair-potential 

+(r$‘) = -Are6 + AB exp (-r$/p), (1) 

for the study of the dispersion of phonons in 
argon and neon. Obviously, this potential func- 
tion is quite consistent with the above considera- 
tions. It not only contains small number of 
parameters (A, B, and p), but it also embodies the 
true interactions between neutral spherical 
atoms. The negative term representing the 
attractive part of the potential is the dipole- 
dipole Van der Waals term, a characteristic of 
the neutral atoms. The other positive exponential 
Born-Mayer term represents the repulsive 
exchange interaction, and has been quantum- 
mechanically obtained. 

The parameters A, B, and p have been deter- 
mined from the values of the sublimation energy 
(L), lattice spacing (a), and isothermal bulk 
modulus (K), all at 0°K. The physical quantities 
at absolute zero are related to the Helmholtz 
free energy of the crystal : 

F, = $N 2 ~(Qj’), + 1 
/zv(i, K) 

J.i’ i,k 
k, Tln 2 sin h kT 

B I 0’ 

(2) 

through the well-known thermodynamic relations 

Lo = --Fo(rlo, 

PO=-(g); =-(&j,(2), 
and 

In case of face-centered cubic solids, like the 
frozen rare gases, the molar volume V = Nr3/2/?, 
where the interatomic separation r = a/d/2. The 
subscript 0 indicates the values of the variables 

at O”K, and other symbols used have their usual 
meanings. The evaluation of zero-point energy 
and its volume derivatives, occurring in the Eqs. 
(3), requires the knowledge of the vibration 
spectrum which itself is a function of the potential 
parameters to be determined. Therefore, they 
are estimated by the Debye theory of specific 
heats, and have been introduced in the calculation 
by iterations (9). 

Phonon Dispersion Relations 
According to Born-von Karman formalism, 

the equation of motion of the kth atom in the Zth 
unit cell is written as: 

(%B=1,2,3) (4) 
where m is the mass of the atoms constituting the 

monatomic lattice, and U, (l) and UB(l,) are 

the components of the displacement from equi- 
librium position of the kth atom in the Zth cell, 
and the k’th atom in the I’th cell respectively. The 

coefficient C& L L, 
( 1 

is related to the atomic force 

constants, and is in fact the force exerted in the 

cc direction on the atom 
0 
L due to a unit dis- 

placement of the atom L, 
0 

in the p direction. 

Proceeding as usual the solution of the Eq. (4) 
can be written down in terms of plane waves of 
wave vector K and frequency v, where the 
frequencies are obtained by solving the secular 
determinant; 

~M(~,j-4~2mv21~=0. (5) 

Here I is the unit matrix, and m is the mass of 
atoms constituting the monatomic lattice. 

K 
M kk’ ( 1 

is the dynamical matrix of order 3 x 3, 

the elements of which are given as 

of atoms. 

IS the vector separation of a pair 
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FIG. 1. Dispersion Curves for Argon. (-) Model 
Potential; Experimental points due to Egger et al.: (x) 
longitudinal, (A) transverse. 

The magnitudes of the force constants 4%~ 
decrease very rapidly for higher neighbors in the 
solids under consideration. The present work, 
therefore, takes account of only four nearest 
neighbors (15) and ignores the contributions of 
higher ones. In order to keep the computational 
work within limits, due to lack of modern com- 
putational facilities in the laboratory, only 8000 
wave vectors K have been chosen corresponding 
to the same number of evenly spaced points in 
the Brillouin zone. The phonon dispersion 
(v(q), q) curves for the principal symmetry 
directions [loo], [I lo], [ll l] have been drawn by 
selecting frequencies corresponding to the points 
(Q,QO), Q,Q,O), and (Q,Q,Q>. Here q is a 
reduced wave vector and is related to the phonon 
wave vector K as q = aK. The theoretical disper- 
sion curves along with the experimental points 
due to Egger et al. (II) and Leake et al (12) are 
presented in Figs. I and 2. 

Discussion of Results 

The quasiharmonic dispersion curves (Figs. 1 
and 2), which have been calculated at 0°K and 
zero atmospheric pressure, show all the charac- 
teristics of monatomic solids (16). The two 
transverse branches in [loo] and [ll l] directions 
are degenerate. At the point (l,l,O), which is 
equivalent to (O,O, 1) point, the [l lO]L branch 
is degenerate with the [OOl]T, branch, and the 
[llO]T, is degenerate with [OOl]L branch. But 
the major interest in the analysis of the results 
lies in the comparison of these theoretical curves 
with the experimental points obtained by in- 
elastic neutron scattering. From the figures it is 
obvious that the points due to Egger et al. (II) for 
argon (obtained at 4.2”K) show very good,agree- 
ment with our dispersion curves. But the agree- 
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FIG. 2. Dispersion Curves for Neon. (-) Model poten- 
tial; Experimental points due to Leake et al.: (Y) longi- 
tudinal, (0) transverse 1, (A) transverse 2. 

ment between the observed points of Leake et al. 
(12) for neon curves can only be said to be 
satisfactory. The discrepancy in the results might 
have arisen due to the choice of less number of 
points in the reciprocal space, and the differing 
conditions of temperature and pressure under 
which the theoretical and experimental dispersion 
relations have been obtained. 

It is also seen that the order of discrepancy in 
the two cases are quite apart. The large disagree- 
ment seen in case of neon is not surprising. Since 
neon lies between the well known quantum solid 
“helium,” and the classical solid “argon.” In 
case of solid helium the lattice dynamics are 
dominated (17) by effects arising from the large 
zero-point atomic motion. While argon may be 
taken as an almost ideal example of simple 
molecular solid, where one can hope to describe 
the dynamics on a classical model and with a 
minimum number of arbitrary assumptions. 
Neon, therefore, may represent an intermediate 
case in which zero-point motion may be expected 
to play a significant role in the dynamical descrip- 
tion of the solid. Dynamical calculations (18) 
have already demonstrated the importance of 
anharmonicity, arising out of large zero-point 
energy in the solid, by giving dispersion results 
in fine agreement with experiments. 

Concluding Remark 

In view of the situation it may be concluded 
that the (exp, 6) pair-potential is quite suitable for 
all rare-gas solids including neon. Most probably 
the agreement may be improved by including the 
effect of anharmonicity arising out of the cubic 
and quartic terms of the potential energy expan- 
sion, in addition to the zero-point anharmonicity 
already included in the present work, and 
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choosing a finer mesh of points in the reciprocal 
space. It is also expected that the availability 
of experimental dispersion curves over wider 
range of temperature and volume in future, may 
lend support to the above conclusion. 
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